Pages

Friday, February 20, 2026

WATER FOR TOMORROW - SMART PATH FORWARD DR, MANJU KURAKAR PUNE ( MAXILLOFACIAL SURGEON )

Water for Tomorrow: A Smart Path Forward

Dr. Manju Kurakar ,Pune (Maxillofacial surgeon)

 

Water is no longer merely an environmental concern; it is a defining strategic  resource of the 21 st century. Despite covering nearly 70% of the Earth’s surface, less than 1% of global water is readily accessible freshwater suitable for human consumption. Rapid urbanization, population growth, climate change, industrial expansion, and unsustainable extraction practices are intensifying pressure on already fragile water systems. Securing water for tomorrow demands not only conservation butalso intelligent, technology-driven, and policy-oriented transformation. Recent discussions in The Lancet journals highlight the paradox of living in a technologically advanced world while grappling with persistent water insecurity. Editorials in The Lancet Regional Health – Southeast Asia emphasize the urgency of groundwater sustainability, particularly in rapidly developing regions where aquifer depletion is accelerating. These analyses reinforce a critical truth: The water crisis is not caused by lack of rain. —it is about lack of governance, equity, innovation, and foresight.

Global water demand is expected to rise steadily in the coming decades. Agriculture already consumes nearly 70% of freshwater, yet much of it is lost due to inefficient irrigation practices, water- intensive cropping patterns, and inadequate watershed management. At the same time, climate change is disrupting natural rainfall patterns — increasing the frequency of droughts and floods, accelerating glacier melt, and allowing seawater to contaminate freshwater sources in coastal regions. Urban areas face a parallel challenge. Aging distribution systems result in major leakage losses, and in many

developing cities up to 30–40% of treated water never reaches consumers. Industrial waste and untreated sewage further pollute available supplies, turning water scarcity into a combined problem ofshortage and contamination.Smart Water Conservation is a technological Frontier, it lies in intelligent integration of digital systems, circular economy principles, and decentralized infrastructure.

Precision Agriculture and Smart Irrigation: Agriculture must transition from volume-based irrigation to data-driven water management. IoT-enabled soil moisture sensors, satellite imaging, and AI-based irrigation scheduling systems can optimize water use in real time. Drip and micro-irrigation technologies significantly reduce evaporation and runoff losses. Drones and precision farming tools allow farmers to apply water only where and when needed. These innovations represent a shift from reactive irrigation to predictive management—conserving water while maintaining crop yield and food security. Zeinab E Mohamed et al. reported in 2026 that IoT-driven smart irrigation system can reduce water consumption by nearly 47% while improving productivity, using sensors, mobile apps, and real-time control. (Mohamed ZE, Afify MK, Badr MM, Omar OA. IoT-driven smart irrigationsystem to improve water use efficiency. Sci Rep. 2026 Jan 16;16(1):2609. doi: 10.1038/s41598-025- 33826-6. PMID: 41545460; PMCID: PMC12820134.)

Digital Urban Water System: Incorporating of IoT-based water meters, acoustic leak detection sensors, and AI-driven predictive maintenance models can reduce pipeline losses. Digital water grids enable real-time monitoring of pressure, consumption patterns, and system anomalies. Water reuse represents another critical pillar of modern urban conservation strategies. Instead of treating wastewater as a disposable by-product, contemporary water management frameworks promote circular utilization. Treated wastewater can be safely reused for non-potable purposes such as flushing, landscaping, cooling systems, and construction activities. Greywater recycling and decentralized treatment plants within residential complexes substantially decrease dependence on freshwater sources. By transforming waste into a secondary resource, cities can markedly reduceextraction from rivers and aquifers.

Rainwater harvesting further complements urban resilience. In dense urban areas  underground rainwater harvesting is often more practical than rooftop tanks. Instead of storing water above buildings, rainwater is collected from roofs, open spaces and stored into a buried tank or recharged below ground using engineered structures. This saves space, prevents flooding, and improves groundwater levels. Storage tanks, recharge wells, permeable pavements, and restored urban water bodies facilitate infiltration and storage, simultaneously mitigating flood risk and enhancing aquifer recharge. Such measures align stormwater management with long-term resource sustainability. The concept of a circular water economy redefines wastewater as a resource rather than waste. Industrial zero-liquid discharge systems and decentralized treatment plants reduce freshwater

demand while minimizing environmental contamination. Countries like Singapore have demonstrated the viability of high-grade recycled water systems, integrating advanced purification technologies intonational supply frameworks.

Desalination and Advanced Filtration: In water-scarce coastal regions, desalination offers an alternative source. Modern advancements focus on energy efficiency, solar-powered desalination plants, and graphene-based membranes to reduce cost and environmental impact. Emerging technologies such as forward osmosis further enhance freshwater production while minimizing

Groundwater monitoring and managed recharge: Groundwater depletion is increasingly recognized  a global environmental and public-health crisis rather than merely a hydrological concern. Advances in satellite gravimetry (GRACE- Gravity Recovery and Climate Experiment), geospatial mapping,and managed aquifer recharge have provided strong scientific evidence that aquifer decline can be monitored and reversed through integrated technological interventions. Artificial recharge systems capture excess rainwater and floodwater, redirecting it underground to restore depleted aquifers. Such hybrid approaches combine traditional ecological knowledge with modern geospatial technologies. Climate variability requires adaptive strategies. Nature-based solutions—wetland restoration, urban green corridors, permeable pavements—enhance water retention and reduce runoff. Floodwater harvesting systems transform extreme rainfall events into resource opportunities. Technology alone cannot solve water insecurity. Effective governance frameworks such as Integrated Water Resource Management (IWRM) are essential. Public-private partnerships may accelerate infrastructure modernization. Water must also be recognized as a human right, ensuring equitable access across socioeconomic boundaries. Rainwater harvesting, greywater reuse, efficient fixtures, and reduced food waste collectively contribute to conservation. Education systems must incorporate water literacy to cultivate responsible consumption habits from an early age.

Water for tomorrow will not be secured through abundance but through intelligence. The convergence of digital technology, sustainable infrastructure, equitable policy, and community engagement defines the new paradigm of water management. As recent analyses in The Lancet

journals emphasize, technological capability must align with inclusive implementation. The tools to secure our water future already exist—smart irrigation, digital monitoring, wastewater reuse,

desalination innovation, and climate-resilient planning. The challenge lies in integrating them,cohesively and ethically. The era of passive consumption must give way to proactive stewardship. Water is not merely a resource; it is a strategic asset, a public health necessity, and a moral obligation. Securing water for tomorrow begins with intelligent action today.

 

 


Thursday, February 19, 2026

KERALA PALLIATIVE CARE INITIATIVE WATER DAY CELEBRATIONS 2025 PHOTOS














 

മഴ വെള്ളം പ്രകൃതിയുടെ ദാനം ജോസ് എബ്രഹാം

മഴ വെള്ളം പ്രകൃതിയുടെ ദാനം

ജോസ് എബ്രഹാം

 

ജലം സൃഷ്ടിക്കാനും വിഘടിപ്പിക്കാനും ശാസ്ത്രത്തിനാവും. എന്നാൽ സ്വാഭാവികമായ ജലം പ്രകൃതിയുടെ ദാനമാണ്. മഴയുടെ രൂപത്തിൽ നമുക്കു ലഭിക്കുന്ന ജലം സംരക്ഷിക്കുന്നതിലും പ്രകൃതിതന്നെയാണു നമ്മുടെ രക്ഷകൻ. പ്രകൃതിയുടെ ഏറ്റവും പ്രധാനപ്പെട്ടൊരു ജലസംഭരണി മണ്ണു തന്നെ. ആയിരം വർഷമെങ്കിലുമെടുത്താണ് ഒരിഞ്ച് കനത്തിൽ സ്വാഭാവിക മേൽമണ്ണുണ്ടാവുന്നത്. മേൽമണ്ണിനെ പ്രാദേശിക പ്രത്യേകതകൾജോസ് ക്കനുസരിച്ചു സംരക്ഷിച്ചില്ലെങ്കിൽ കേവലം രണ്ടര വർഷം മതി മണ്ണൊലിപ്പ് മൂലം ഇതു നഷ്ടപ്പെടാൻ. മണ്ണിനെ സൃഷ്ടിക്കാൻ മനുഷ്യനാവില്ല.

പ്രകൃതിയുടെ സ്പോഞ്ച് എന്നാണു നമ്മുടെ മഴക്കാടുകൾ അറിയപ്പെടുന്നത്. പശ്ചിമഘട്ടത്തിലെ മഴക്കാടുകളുടെ കണക്കെടുത്താൽ ഒരു ഹെക്ടർ വനഭൂമി 30,000 ഘനമീറ്റർ മഴവെള്ളമുൾക്കൊള്ളുമെന്നാണു പറയുക. നാട്ടിൻപുറങ്ങളിലെ ജലവിതാനം നിലനിർത്തുന്നതിൽ വയലുകൾക്ക് വലിയ പങ്കുണ്ട്. ഒരുഹെക്ടർ വയൽഭൂമിയിൽ അഞ്ചുലക്ഷം ലീറ്റർ വെള്ളംവരെ തടഞ്ഞു നിർത്തുമെന്നാണു കണക്ക്.

കുന്നുകളും പുഴകളും അരുവികളും തടാകങ്ങളും തോടുകളും കായലുകളുമെല്ലാം പ്രകൃതിയുടെ ജലസംഭരണികൾ തന്നെ. ഇവയുടെയെല്ലാം സംരക്ഷണം ഉറപ്പുവരുത്തിയാൽ മാത്രംമതി